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NUMERICAL INVESTIGATION OF THE 

TEMPERATURE FIELD OF A DAM WITH FREEZING COLUMNS 

P. M. Kolesnikov and T. G. Protod'yakonova UDC 536.24:536.421.4 

The problem of interconnected heat and mass transfer is numerically solved. The 
temperature field of a dam with an artificial freezing antifiltration curtain is 
determined. 

In the construction of dams in the permafrost region the problem of the thermal stabil- 
ity of the soils arises because when they melt, they lose their load-bearing capacity and 
become highly water-permeable. To maintain the soils in the foundation and in the body of 
the dam in their frozen state, and thereby also to prevent losses on filtering, soils arti- 
ficially frozen with the aid of number of boreholes are at present widely used: in some 
cases by stimulating circulation of natural cold, in others with the aid of refrigeration 
techniques. 

Several authors in the USSR and other countries studied in recent times the processes 
of freezing of the soil, with filtering of the moisture taken into account. For instance, 
Melamed and Medvedev [i] studied the process of freezing of finely dispersed soil taking 
bulging into account on condition that the phase boundary between water and ice the moisture 
is constant and equal to its lower limit. Frivik and Komini [2] presented the results of 
experimental and numerical investigation of the process of freezing of the soil with a view 
to the filtration flows of moisture (the equation of heat conduction with a convective term 
is solved, where the speeds are determined from Darcy's law) with constant moisture equal to 
saturation moisture; on the surface of the refrigeration plant, boundary conditions of the 
first kind are specified. 

In the present article we examine the problem of determining the temperature field of a 
dam with an artificially provided antifiltration curtain. Mass transfer in the melting zone 
considerably complicates the investigation because it makes it necessary to take into account 
the interaction of the temperature and moisture fields in the melting and frozen zones of 
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Fig. i. Temperature field of a dam without insulation with 
constant thermal flux from a refrigerating plant QI = --1.163 
W/(m=-~ a) after 9 months; b) after 1 year and 9 months; 
c) after 2 years and 9 months; Ta = 16~ 

the soil. Mathematically this problem reduces to the solution of the following system of 
equations for the functions ui (temperature) and w i (moisture content): 

ci (u~) P (uO Ou---L = div (%~ (u,) grad u~), (x~, x~) ~ Qi, t > 0, 
0t 

ci (ui, wi) O (ui, ~-'i) 

( 1 )  

Oui = div (~i (ui, wi) grad ui 4- 5~] (ui -- u*) ki (wi) grad wi), 
Ol (2) 

OWl 
-- div (ki (wi) 1] (ul - -  u*) (grad wl 4- 5r grad ui)), 

Ot (3) 

(x~, x2) E~i,  t ~ O ,  i = 2 ,  3, 
with the initial conditions 

ui (x,, x2, O) = uo = const, wi (xl, x2, O) = Wo - -  const  (4) 

and the boundary conditions 

- -~(u~,  wi) 8v~ --F(u~), (x~, x2)[-0f24, t > 0 ,  [ = 2 ;  3, (5) 
0n 

depending on the kind of refrigeration plant, F(ui) is equal to QI or ~ef(TB(t) -- ui), 

~ Oui ~ 8ui+i ui(x,, x2, t)==ui+l(xt, x2, t), i=-1;  2, 
On -- ~+'< On ' 

w~+, (x~, x~, t) = Ws, i = 2, (xi, xd E (09~ ~ 8~+~), t > O, (6) 

w~ (x~, x~, t ) =  wa(x~, x2, t), 

k2 (w2) Ow., 0~,.___2_, 
8----~ = k3(w~) On ' (x~, x2)C(Og-.208f~3), t > O ,  (7 )  

u~(x~, x2, t) = 4, w~(x;, x~, t)=ws, (x~, x.~)~.(O~j. NOf2~), (8) 

- -  ~,i Ou~ . . . .  ct(Ta(l)---u~), i - -  1, 3, w~(xi, x,,, t) = w l ,  (9) 
On 

i==2; 3, (x~, x.2) Ef~, t > O ,  
Ou~ 

- - ~  - - 0 ,  i = : l ;  3 ,  
On 

- -k3 (~ )  --0,  (xl, x.~)qQ, t > O .  (lO) 
8n 

On the movable boundary of phase transition Stefan's condition is fulfilled 
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F i g .  2. Tempera ture  f i e l d  o f  a dam wi th  p a r t i a l  i n s u l a t i o n  
over  ODE w i t h  c o n s t a n t  t h e r ma l  f l u x  Qx from a r e f r i g e r a t i n g  
p l a n t  (a ,  b, c:  see F ig .  1 ) .  

:= YPx - - ,  
~,1(ul) On j~(~) dt 

u.~ (x~, x2, t) = U,M (X,, X2, t) = U*, (Xl, X2) ~ ~ (t). 

[;~(Ui, W~) OU~ ] =,,o~w~ d~ Ow___~ 
On J~(~) ~ +?psk~(w~) On ' 

U~m (X,, X2, t ) =  U~, u (11, ..1'23, t ) =  U*, i = 2; 3, (xl, x~)~ ~(t), 

(~1) 

(12) 

where 

1, x > 0 ,  
rl(x)= 0, x~<0. 

For the  thermophysicaX c h a r a c t e r i s t i c s  the  fo l low•  dependences  were a d o p t e d ,  d a t a  of  
[3-5] be ing  used :  

k (m) = 3,786.10 -5 exp (16,446 w), 

13 (u, w) : :  psk(l + w), c(u, w) = (Csk -[- cl (u) w)/(1 -k w), 

:~i~(ui, w~) = ~sk ,~ bw~, )~M (u~, wi) = L~m(ul, ws)/(0,67+ 4,1 w~). 

With the  a• of  the  e n t h a l p y  f u n c t i o n  and the  t h r o u g h - c o u n t i n g  method [6, 7] ,  t he  p rob -  
lem reduces  to  the  s o l u t •  of  a sys t em of  e q u a t i o n s  w i th  smoothed c o e f f i c i e n t s :  

at 

OUl = div ([1 (ul) grad u0, (xl, x2) E f~1, 

- -  div (~/(ui, wi) grad ul -k kwi (wl) grad w~), 
Ot 

-- div (ki (ws) (grad wi -k 6r grad us)), 

(xl, x2) Efh, i = 2 ;  3, t > 0 ,  

where ~.~M (u~, wd. ul < u* - -  A, 

(~im § ~.~M -4- (~.~m - -  ~,u) (u~ - -  u*)/A)/2, u* - -  h ~ ui ~ u* § A. 

~'im (m, W3, U~ > U* + A, 

i (u. W~)~M(U. w3, u~<u* A, CiM 

(c~p ~M § ci,~p~m + (ci,.O~,. - -  tim p~M)(u~ --  u*)/A)/2 § 

] @ ~'piWi(1 --lUi --u*[/A)/A, u* - -  A ~ u l  ~ u* + h, 

t tim (ui, w~) psm (us, w3, us > u* + A, 
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k, (w3, u, > u* + A, 

k ~ ( w , ) =  k ~ ( w , ) ( u ~ - - u * + A ) / 2 A ,  u * + A ~ u i ~ u *  - - A  

0, Ui ~ u* - -  A, 

0, t/i ~ tt* - - A ,  

, ki (~i )  (ui - -  u* -~- A)/A, u* - -  A ~ u~ ~-~ u*, 

[ /~ (w3 (1 - -  (1 - -  a,~)(u~ - -  u*)/~), u* < u~ ~ u* + A, 

t 6,,:k~ (w~), ui > u* § A, 

with the corresponding initial conditions (4) and the boundary conditions (5)-(10); it is 
solved numerically by the finite difference method using locally one-dimensional schemes and 

the method of simple iterations: 

. n-~-l/2,s+l " n + l / 2 , s 2 n + l / 2 , s  , n+ l /2 , s+ l  __ ( ~ + l / 2 , s  UiTq )x, '  (XI' X2) ~ ~'~1, 

~ n + l / 2 , s ~ n + l / 2 , s  n+l/2,s-}-I ~ . n + l / 2 , s + l  ~ ~n+l/2 ,s~3n-~l /2 ,s  ~ 
Ci Di 12 H ~ (~n~-l./2,s U/'~ ~ -  r~wi iXt I L '  

n+l/2,s~-  1 ~ . n + l / 2 , s + l  n-~- 1/2,s+ 1 ~x 
w~7 (k~ .1 /2 'S  = (~i7, ~- 6rufi . ,  )l  L,  

(xl, x2) E~Qi, i = : 2 ;  3, 

- n - r l , s "  n + l , s  n-I- 1 ,s-}- l n+  L,s-~- 1. 
Cl 01 UI7 = (~7 +~'s U,~. ) ; ,  (Xl, X,.) E ~1, 

~n-~-I s~n - r l , s  n~-l,s-~l :_~:_ ( ~ q - l , s  n-~-l,skl 'Tn-[-I s n ~ l , s  
Ci ' [3i tti~ n~x- ~ -~  Rovi ' ~ i : ~  )x~' 

03n-~- 1 ,s+ 1 (~)n+ 1 ,s-~- 1 6 tL+ l ' s +  l'ct ̂  
;t : ' ( k T " J - | ' s  ix~ -~  TUix"  .I]x2, (X1, X2) E f 2 i ,  i : 2 ;  3, 

~n. +h/2. s ttn. +k/2,s+ 1 ~x~ ~ 0 ,  i : I ;  3, 

~ n + k / 2 ,  s n+k/2 , s+l  
3 ,~3~ k = O, (xl, x~) E r~, 

~n+k/2 ,  s n..~k/2,s+l 
u iF  h . = dos(n ,^xh)~(uT+h"2"~+l  - -  Ta ), i =  1, 3, 

w7 +h/2'~+l = wx, i = 2, 3, (x~, x~ )E / ' l ,  

~+h / z , s  u%+h/2,s+~ = F[U n+h/ 2 's+ 1~ 
~x h ~ * i, ( x .  x~) E 09.~, 

~ n + k / 2 , s  u n + k / 2 , s + l  __ ~nq-k /2 , s ,  n + k / 2 , s + l  
i i x  h - -  tH-}-i ~ i~- lx  k , 

t tn+k/2 ,s+ 1 n+h/2,  s-~ 1 
= u i+ i  , i - - 1 ;  2, (x~, xOE(Of~xNOg~)O(Ot]~N&q3), 

n+h/2 s.+- 1 
w~ ' = Ws, (x~, x2 )E(0 f2~No~) ,  i -  2; 3, k = 1; 2. 

We c a r r i e d  o u t  n u m e r i c a l  c a l c u l a t i o n s  f o r  t h e  c a s e  t h a t  t h e  b o d y  o f  t h e  dam a n d  t h e  
f o u n d a t i o n s  c o n s i s t  o f  l o a m  a n d  s a n d y  l o a m ;  we h a d  f o r  s a n d y  l o a m :  P s k  = 1 6 0 0 ,  Csk = 0 . 7 3 3 ,  

Xsk = 1 . 2 9 ,  b = 3 . 8 4 ;  f o r  l o a m :  Osk = 1 5 0 0 ,  Csk  = 0 . 7 7 5 ,  Xsk = 0 . 7 2 ,  b = 3 . 7 2 ;  Uo = - - 2 . 5 ~  
wo = 0 . 1 ,  w a = 0 . 2 ,  w~ = 0 . 0 5 ,  ~, = 3 3 3 . 7 ,  ~ = 1 8 . 3 4 ,  6T = 6w = 0 ,  T a ( t )  = - - 7 . 4  + 2 4 . 1  c o s  
( 2 w ( t  + C o ) / t ~ ) .  

The results of the calculations of long-term isotherms are presented in Figs. 1-3. 

Figure 1 shows the temperature fields of a dam for different periods of time, with con- 
stant thermal flux from a refrigerating plant F(u) = Qa = --1.163 W/m = in the absence of 
insulation on the surface CDE. The large heat capacity of the reservoir maintains thawed 
ground under its bottom to a depth of about 2.5-3 m. It can be seen from Fig. 2 which shows 
the isotherms for the same periods of time and with the same thermal flux, but with partial 
heat insulation of the surface of the dam CDE with thermal resistance R = 0.298 and heat- 
transfer coefficient with the air ~ = 2.84 W/(m ~o~ that the depth of thawing is smaller 
than in Fig. 1 solely at the time of the first summer period. Later the effect of the heat 
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Fig. 3. Temperature field of a dam with refrigerating 
plant for liquid, with ~ef = 15.77 W/(m.~ a) after 9 
months; b) after 1 year and 9 months, Ta = 16~ c) after 
2 years and 3 months, T a = --31~ 

insulation on the temperature field of the dam and of its foundation becomes insignificant 
because the depth of freezing in the subsequent winter periods becomes smaller. 

Upon freezing of the dam with a siphon pump we calculated from the conditions of ther- 
mal balance the effective heat-transfer coefficient which for circulation of kerosene with a 
speed of v = 0.01 m/sec is equal to 15.77 W/(m2-~ The results of the calculations, where 
on the surface of the freezing column a boundary condition of the 3rd kind with ~ef was 
specified, are shown in Fig. 3. In winter a thick frozen core forms, the thawed zone is 
maintained under the water reservoir only, but in summer the convective heat exchange of the 
siphon pump leads to the thawing of the body of the dam if adequate measures are not taken. 

NOTATION 

t, time; x~, x2, space coordinates; ~, water reservoir~ ~2, body of the dam; ~3, foun- 
dation of the dam; ~4, freezing column; ul, temperature of the water reservoir; u2, w2, tem- 
perature and moisture content, respectively, of the body of the dam: u3, w3, temperature and 
moisture content, respectively, of the dam foundation~ ci, Pi, %i, coefficient of heat capa- 
city, density, thermal conductivity, respectively, of water (i = i), of the materials of the 
body (i = 2), and of the foundation (i = 3) of the dam~ ki(wi) , moisture conductivity; uo, 
wo, initial temperature and moisture, respectively; Ws, moisture content in case of satura- 
tion; ~, heat-transfer coefficient with air; Ta(t) , air temperature; y, heat of phase transi- 
tion of water~ u*, temperature of phase transition; A, smoothing parameter; Psk, Csk, %sk, 
density, heat capacity, and thermal conductivity of the soil skeleton, respectively; FI, 
boundaries of the dam, of the surface of the water reservoir, and of the dam foundation in 
contact with the atmosphere (along the line ABCDE); F2, part of the boundaries of the water 
reservoir and of the dam foundation along the line AHGF. 
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